Excited state lifetime and amplitude measurements were made on thiazole orange dimer (TOTO), a dimeric DNA-intercalating fluorophore, at single-molecule concentrations. As expected from previous study, the excited state lifetime of TOTO intercalated in DNA is dependent on the sequence of the double-stranded DNA, having values of 2.2 ns in poly-GC DNA and 1.8 ns in poly-AT DNA. The distribution of excited state lifetimes of single molecules of TOTO intercalated into oligonucleotides having varying proportions of poly-GC sequences relative to poly-AT sequences were analyzed as a function of the fraction of poly-GC. By using excited state lifetime distributions from the purely GC and purely AT oligonucleotides as a basis set, it was possible to estimate the GC content of oligonucleotides with intermediate GC composition to within a few percent error. This serves as a model for the analysis of equilibrium binding distributions in DNA using single-molecule methods.